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We propose a design for an incremental garbage collector for the Glasgow Haskell Compiler.
The goal of this design is to reduce maximum pause times for major garbage collections while
maintaining throughput similar to the current collector in both serial and parallel programs.
Furthermore, the design aims to preserve GHC’s existing heap organization to minimize the
invasiveness of the implementation.

1 Background
Currently, GHC uses a generational, moving collector [Ungar1984] based on a block-structured
heap [Marlow2008]. During collection under this scheme, live heap data is copied from its
present location (in an area we will call from space) to a newly allocated segment of memory
(namely, to space), replacing the old object with a forwarding pointer. After the copy has
been made, the collector adds a pointer to it to a queue, known as the scavenging queue.
This entire process is known as evacuation.

After all roots have been evacuated, collection proceeds by popping an object from the
scavenging queue, evacuating its references if they haven’t yet been evacuated, and updating
its pointers. This continues until the scavenging queue is empty, at which point all live
objects have been relocated to to space and no references to from space remain.

Moving collectors offer excellent data locality characteristics and supports extremely cheap
allocation. The collector is typically configured with a small, cache-sized nursery (~1 MByte),
ensuring that nursery collections are of bounded size.1 Furthermore, the fact that the nursery
fits in cache permits extremely fast allocation and collection. The older generations, however,
may grow in size without limit. As the collector must traverse the entire heap in order to
collect, pauses due to oldest-generation collections may be arbitrarily long. This can be
problematic for services which must guarantee bounded response time to external events.

1.1 Incremental, moving collection
Incremental collection is one means of mitigating long pause times. By constructing the
collector to make progress while traversing only a fraction of the heap in each pause, one can

1Note that in a generational collector the fact that a nursery is of bounded size doesn’t necessarily
guarantee that it needs to do a bounded amount of work: the collector must also traverse the remembered set
which may in principle contain the entirety of the old generation. However, in practice the weak generational
hypothesis tends to hold quite well and consequently it is usually safe to assume nursery collections will
require only O(nursery size) work.
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bound pause times. However, due to book-keeping and synchronization overhead, incremental
collection typically comes at the expense of throughput.

One common incremental, moving collection scheme is Baker’s algorithm. Under this scheme,
the collector evacuates and scavenges as described above, but may stop collection at any time.
To ensure progress, the user program (which we will hencefore refer to as the mutator) must
ensure that it doesn’t introduce any new references to objects still residing in from space
into the heap. This is accomplished by way of a read barrier, where the mutator assesses the
location of all pointers it encounters and scavenges those still residing in from space.

The sort of naive read barrier used by Baker’s algorithm tends to incur a significant runtime
cost. [Cheadle2000] describes an incremental collection scheme implement in GHC based
on a variant of Baker’s algorithm. Their collector exploits a characteristic of GHC’s heap
structure to efficiently implement the read barrier. While the approach demonstrates
promising pause-time reductions, it suffers from a number of issues. Specifically:

a. a dramatic increase in code size with attendant adverse effects on cache effectiveness
b. incompatibility with the pointer tagging optimization [Marlow2007] introduced into

GHC in the intervening years, which significantly improves runtime efficiency on modern
hardware.2

c. reduced efficiency in parallel programs due to the need for synchronization during
scavenging3

These issues, particularly (b), pose a significant challenge to the use of the Cheadle concept
in GHC today. Furthermore, without a trick analogous to Cheadle’s read barrier, Baker’s
algorithm has been shown to exhibit poor performance compared to other modern collectors.

Another family of approaches is that of concurrent copying collectors. These generally fall
into a few categories:

those requiring virtual memory subsystem support One approach to avoid the need
to compact the entire heap in one uninterrupted pass is to use the machine’s virtual
memory subsystem to trap writes to pages containing unscavenged objects. While
these approaches [Kermany2006] [Tene2011] offer outstanding pause times and very
good performance, the implementation complexity and platform dependence that they
demand is above what GHC can support.

those requiring additional indirection Another approach for avoiding O(n) pauses dur-
ing copying collection is to simply avoid including pointers in heap objects. Instead,
one can use a handles and an auxiliary lookup data structure, ensuring that there is at
most one reference to update for each evacuated object.

those requiring tracking of in-references Another means of bounding pause times for
copying collection is to collect a data structure to ensure that the references to a
relocated object can be found in O(1) time [Detlefs2004]. However, the complexity
associated with tracking this metadata introduces its own set of space and time
overheads.

2[Marlow2007] reports that pointer tagging improved runtime performance by an average of 13%. However,
it is likely that its effect is even more pronounced on today’s hardware due to the importance of cache
utilization and branch prediction on long-pipeline processors.

3Specifically, mutators must use atomic memory operations while scavenging to prevent potential memory
leaks due to objects being copied multiple times.

3



1.2 Non-moving collection
In general, incremental collection is significantly easier in a non-moving collector. Under
this design, each object remains in a single location throughout its lifetime. This frees the
collector from the need to update references to moved data, which significantly simplifies
incremental collection.

One such non-moving collector is the traditional mark-and-sweep. Under this scheme, the
collector maintains a liveness flag for each allocated object. At the beginning of collection
all such flags are cleared and the marking phase begins. In this phase the collector traverses
all live objects in the heap starting from a set of roots, setting the liveness flag of every
traversed object and adding the object’s pointers to a marking queue. This continues until
the marking queue is empty, at which point each object’s mark bit reflects its liveness state.
Upon conclusion of marking the sweep phase begins, where the collector walks the entire
heap looking for allocation cells containing dead objects; these are returned to a free list
from which future allocations can be serviced.

A significant advantage of this approach is that marking can be carried out either incrementally
or concurrently with mutator execution. However, this approach makes a few trade-offs
relative to a moving collector:

locality It is often true that heap objects which are allocated at the same time will also
tend to be accessed together. Copying collectors are helpful in such cases as temporally
proximate allocations will generally end up near one another in address space. This
help cache utilization, which can improve runtime performance significantly on modern
hardware.

By contrast, non-moving allocators will tend to scatter temporally proximate allocations
throughout address space.

fragmentation Heap fragmentation is not a concern in copying collectors as they do not
preserve interstitial free space.4 This is not true of non-moving collection, which
must track and allocate into the gaps between live objects. However, there are well-
known techniques to mitigate the fragmentation problem and many have argued that
fragmentation tends not to pose a problem for modern free-list allocators in practice
[Johnstone1998].

allocation overhead Moving collectors permit the use of extremely efficient bump-pointer
allocation. By contrast, non-moving collectors must make use of some sort of free-list
allocator, even the most efficient of which will be significantly more expensive than a
bump-pointer allocator.

Despite these trade-offs, the relative ease of concurrent collection makes non-moving collection
a natural choice in settings where low pause time is prioritized above throughput.

2 Detailed design
We propose a concurrent mark-and-sweep collector, inspired by [Ueno2016], for collection
of the old generation. By retaining a copying collector for the nursery, we avoid imposing

4While copying collectors eliminate heap fragmentation, GHC’s particular collector builds on top of a
block allocator. In principle this allocator may fragment, although this tends not to be a problem in practice.
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the high allocation-cost of a free-list allocator on the mutator while still enabling low-pause
collection of the old generation.

This design enables concurrent collection by way of snapshotting: the heap representation is
constructed in such a way that with a small amount of additional metadata and a means
of keeping track of pointer mutation (via a write barrier), the collector can compute a
conservative approximation of the heap reachability graph as it existed when the snapshot
was taken. This ability allows the collector to safely collect while the same heap is mutated
by one or more mutator threads.

Under this design, the mutator will allocate via the same fast bump-pointer allocation scheme
currently used in GHC. When the nursery fills, the generation 0 collector will move promoted
data into the generation 1 heap, managed by a free-list allocator. The non-moving generation
1 heap will be periodically collected via a mark-and-sweep collector.

In the following we elaborate on the heap data structure, allocation, and collection algorithms.

2.1 Non-moving heap structure
In order to avoid heap fragmentation, the allocator consists of a family of sub-allocators
{H3, ..., Hn}. Each allocator Hm services allocations of size 2m bytes.

Sub-allocator state
Filled Current Active

Segments

Blocks Bitmap AllocPtr AllocPtrSnap

2m words

Sub-allocators H5 H6 H7 H8H4

Figure 1: The three levels of hierarchy of the non-moving heap structure consisting of:
multiple sub-allocators servicing a logarithmically-spaced selection of allocation sizes; the
sub-allocator state tracking containing a set of fill segments, an active segment, and a set of
active segments; the segment structure, consisting of a Blks array, a liveness bitmap, and
two allocation pointers.

The memory allocated into by Hm is divided into segments (following the nomenclature of
Ueno et al.) each of size N . Each segment consists of

• an array of N/m blocks (Blks) each of size m into which objects are allocated
• a marking bitmap (Bitmap) of length N/m bits5

• an allocation pointer (AllocPtr) pointing to the first unallocated block within the
segment

5If parallel marking is desired then there are two options for representing Bitmap:
a. use an entire byte to represent each bit, allowing safe concurrent update without synchronization, or
b. continue to use a bitmap representation but use an atomic OR operation for marking
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• an allocation snapshot pointer (AllocPtrSnap), which captures the value of
AllocPtr at the time the last snapshot was taken.

The suballocator’s state is a tuple of

• A Filled list, containing segments which have no unallocated blocks
• An Active list of segments which contain unallocated blocks
• A Current segment, into which the allocator is currently allocating

In addition to the state of the sub-allocators, the allocator will also maintain a list Free of
unallocated segments.

2.2 Allocation

Non-moving
Allocator

BitmapCurrent
segment

Blocks AllocPtr

Figure 2: The non-moving allocator reads and updates AllocPtr and reads from the
Bitmap of the segment into which it allocates.

Allocation for a request of size n proceeds as follows,

1. Select sub-allocator Hdlog2 ne to service the request

2. Find a segment to service the request

a. Examine Hm’s current segment; if it is full (e.g., its allocation pointer is beyond
the last block of the segment) then place the segment in the Filled list and
attempt to obtain new segment from Active and if successful proceed to (3),
otherwise proceed to (b)

b. If Active is empty then attempt to obtain a fresh segment from Free and if
successful proceed to (3), otherwise proceed to (c)

c. If Free is empty then either allocate address space for additional segments or
initiate garbage collection and retry (2).

3. Set AllocPtr to the address of the next available block (i.e., the first block in Blks
after AllocPtr whose corresponding bit in Bitmap is not set). Return the old value
of AllocPtr as the allocated memory.

This is ultimately a trade-off between cache effectiveness and synchronization overhead. The performance
implications of this decision will need to be characterized if parallel marking is implemented. [Garner2007]
offers a slightly dated characterisation of this design decision, showing that atomic operations incur a roughtly
10-15% cost in a trace loop on modern architectures.

An interesting implication of (b) is that it means that we may be able to do away with the distinct Bitmap
structure entirely, instead tracking the mark state using the low bit of the info table. This would require
some
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Note that allocation does not set the allocated block’s bit in Bitmap; this will only happen
during the mark phase. This separation of concerns ensures that only the collector writes
into Bitmap, enabling allocation to proceed concurrently with marking.

2.3 Snapshotting
To allow concurrent marking and mutator execution, we use the snapshotting ability of the
non-moving heap to capture a coherent picture of the heap. We can then safely collect by
implementing our mark phase to compute a conservative approximation of the reachability
relation as it was at the time the snapshot was collected. Specifically, this approximation
must respect the following invariant, which we will call the snapshot liveness invariant:

All objects that were reachable at the time the snapshot was collected must have
their mark bits set at the end of the mark phase.

Ensuring this invariant6 requires some degree of cooperation from the mutator, which may
change pointer references during the mark phase. Specifically, mutators must implement a
write barrier, ensuring that all pointers that a mutator overwrites are added to a list known
as the update remembered set, UpdRemSet.7 The mark phase can then mark the transitive
closure of objects added to this set, ensuring that the invariant is respected.

Since we don’t want to require stack mutations to be subject to the barrier we must mark
stacks eagerly; that is, all pointers living on thread stacks must be added to the mark queue
at the time the snapshot is taken. Collecting a snapshot and enabling the write barrier
requires synchronization between the collector and all mutator threads. Specifically, the
following protocol is used:

1. Stop all mutator threads
2. For all segments in all sub-allocators’ Filled and Current segments8 assign

AllocPtrSnap := AllorPtr
3. Record root sets (e.g. threads on the scheduler queues and their stacks, weak pointers,

and static pointer table entries, stable pointers).
4. Enable the global mutator write barrier flag
5. Resume mutator threads

2.4 Collection
The initial implementation will be a non-parallel, concurrent collector, although extending
to allow parallel collection (e.g., multiple collector threads) will not require significant design
changes. To enable concurrency, we take advantage of the snapshotting capability of the Ueno
heap described above. This allows for sound collection in the face of concurrent mutation.
However, our approach foregoes much of the complexity of the original Ueno paper which
allowed concurrency during the root collection phase to reduce the pause due to the initial
stop-the-world period.

6For instance, consider that the mutator overwrites the last reference to an object A prior to A being
marked. According to the snapshot liveness invariant A must be marked but would not be in this case.

7The name “update remembered set” is intended to distinguish it from the generational remembered set
used by GHC’s current collector to track references from old to young generations.

8Note that it is unnecessary to update AllocPtrSnap of segments in the Active list: segments in
Active by definition have not been allocated into since the last collection and consequently AllocPtr will
not have changed since we last updated AllocPtrSnap at the end of that collection.
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Garbage collection occurs in three phases: the preparation phase, followed by the mark phase
and then the sweep phase. The preparation phase is a short stop-the-world period at the
beginning of the collection cycle. The mark and sweep phases can both occur concurrently
with mutator execution, but not with one another.

2.4.1 Preparation

An old-generation collection cycle begins with a single capability (which we will call the
initiator) requesting a collection. In response, all other capabilities will suspend mutation.
After suspending the mutators we will perform a garbage collection of all young generations.
If while tracing the young heap we encounter a reference to an object living in the nonmoving
heap we push the object to a list for later marking9.10 Additionally, any objects promoted
to the nonmoving heap must also be pushed to this list.

Once the initial collection has finished, the initiator will build a list C of segments to be
collected from the union of all sub-allocators’ Filled lists. It will then clear the Bitmap of
all segments in C.

The collector will then take a snapshot as discussed in Section 2.3. Finally, the initiator will
signal to other capabilities that they may resume execution and will itself proceed to the
mark phase.

To summarize, in the preparation phase the collector has:

• performed an initial collection, promoting all live data into the non-moving heap.
• determined the set of segments C which will be collected in the coming collection cycle
• initialized the marking bitmaps of the segments to be collected
• taken a consistent snapshot of the heap segments
• collected a consistent root set from living threads
• enabled a write barrier to ensure consistency with the snapshot

2.4.2 Marking

During the mark phase the collector will trace objects from the following roots,

• roots from thread stacks collected in the preparation phase11

• the remembered set, UpdRemSet, mentioned above
• stable pointers
9One possible implementation strategy for this list is to simply re-use UpdRemSet. This works out nicely

as it avoids introducing a new datastructure and easily accomodates parallel collection, since each GC thread
holds a capability and each capability has its own update remembered set.

10An earlier version of this design instead mandated that all live data be promoted to the nonmoving heap
during the preparatory GC. This sacraficed the ability to age objects before a major collection in exchange
for avoiding implementation complexity.

While less complex, this design had the potential to copy significant amounts of data unnecessarily to the
nonmoving heap. While it was originally thought that this unnecessary copying would occur infrequently
enough to be of little consequence, some programs behaved quite pathologically (e.g. the cryptarithm1
program from nofib, which was found to copy nearly an order of magnitude more under the nonmoving
collector than the copying collector).

11A compelling, lower-pause-time, alternative to marking stacks during the stop-the-world is to instead do
so before the thread is scheduled for the first time after a snapshot. This would shift pause time out of the
GC-initiation pause into mutation-time, potentially dramatically reducing overall pause times in programs
with many threads. The usual mark flag can be used to record whether the stack has been marked this
collection.
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• static pointer table (for the -XStaticPointers mechanism) entries
• (in the non-threaded runtime only) signal handlers

In addition to object’s usual pointers fields, for proper tracking of CAF liveness, the collector
must also trace pointers found in the static reference tables (SRTs) of known-live closures.

One important trait of the current moving collector is its ability to “short-out” indirections
due to thunk update. Furnishing this ability in a mark/sweep setting requires that we save
with each pointer in the trace queue a reference to the object in which the pointer was found.
Since interior pointers are problematic for scavenging,12 we represent this reference as a pair
of a pointer to the containing object and a field index.

Marking proceeds in depth-first fashion as follows,

1. pop an item o from the trace stack or one of the above root sources13

2. identify where o resides:

• if o resides in the nursery then ignore it.14

• if o resides in the non-moving heap then identify which segment it lives in and
proceed to (3)

3. if either15

12The need for scavenging of the trace queue is described in Section 2.4.5. The difficulty with interior
pointers hinges on the fact that, in order to scavenge, one must be able to find the object header to determine
whether the object has been replaced with an indirection. While this is possible for interior pointers into
objects in the non-moving heap (since objects are aligned to the block size), this is not possible for pointers
into the nursery.

13A nice property of this mark algorithm is that its cache utilization can be easily improved by use of edge
enqueuing [Garner2007] and a prefetch FIFO [Cher2004] [Boehm1993].

Under an edge enqueuing scheme we add all pointers of a marked object to the mark queue, regardless of
whether or not the referents have been marked. This is in contrast with a traditional node enqueuing mark
algorithm, which adds only those pointers whose referents are not themselves marked. This scheme trades
a significantly higher number of enqueue operations in exchange for dramatically better temporal locality
during the mark phase. [Garner2007] found that enqueue operations are a negligible contribution to the
overall cost of marking, which is rather dominated by the cost of memory accesses.
To further improve locality we use a prefetch FIFO: Here we maintain a fixed-size FIFO data structure

which tracks the entries that we will mark in the future. To fetch the next item to mark we look at the tail
of the FIFO. As we do so we also push a new item from the trace stack or roots to the head of the FIFO
and additionally issue a prefetch instruction on this new item. With proper FIFO size we can dramatically
improve the data cache hit rate and consequently hide memory access latency. [Garner2007] shows that a
FIFO length of eight is sufficient to hide memory latency on modern hardware.
Together, these two measures will serve to shield the mark phase from much of the suboptimal spatial

locality produced by the free-list allocator.
14Note that because we have guaranteed that all objects reachable from younger generations were marked

during preparation, we can safely ignore objects living in the young generations during mark. Such objects
must have been allocated since the beginning of the mark phase and therefore aren’t the subject of the
current collection cycle.

15This criterion for marking identifies the set of objects which was alive at the time that the snapshot was
taken (which we are obligated to mark by the snapshot invariant). However, seeing this is a bit subtle. To
make this clear consider the following three cases:

• The block’s address is less than AllocPtrSnap: In this case the block must have already been
allocated at the time the snapshot was taken therefore we must mark it under the snapshot invariant.

• The block’s address is greater than or equal to AllocPtrSnap and
– The block is marked: In this case the block’s segment was either in the active or current list when

the snapshot was taken but the block was live last time the segment was swept and therefore
contains a value object. Consequently, we must mark it.
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• the address of o is >= AllocPtrSnap and the object is marked, or

• the address of o is < AllocPtrSnap

then mark o and push its pointers to objects in the non-moving heap, each paired with
a reference to o and its field index, to the trace stack. In the case of CAFfy things we
also must push the object’s SRT.

Marking finishes when both the trace stack and all root sources are exhausted. At this point
the collector can do the following:

• filter the nonmoving generation’s generational remembered set, removing any unmarked
objects (since they will be swept shortly)

• disable the snapshot write barrier and signal to the mutators to continue
• proceed to the sweep phase

2.4.3 Marking and cyclic heaps

Notice how the mark criterion requires that we mark closures that have already been marked.
This is problematic in the presence of cyclic structures on the heap as the mark will no
longer terminate (strangely, this is an issue which the Ueno paper does not mention).

The problem is that we cannot distinguish between the following situations:

1. An object living in an active or current segment which is marked because it was live
the last time we swept it

2. An object which is marked because we have already marked and traced it in the current
major GC

We saw above that we must mark in situation (1) since failing to do so may lead to incorrectly
swept objects. However, we must not mark in situation (2) since doing so may lead to
non-termination. Consequently, we must encode more information in the segment metadata
to distinguish these cases.

To account for this we extend the segment bitmap to include another bit per block. This
will allow us to represent the following three states:

a. block is unmarked
b. block was marked in a previous collection but hasn’t been marked/traced in the current

GC
c. block has been marked/traced in the current GC

To avoid needing to update the bitmaps on every major GC to flip (b) and (c), we use the
same trick used by the moving GC to mark static objects. We start by defining two states
which we call mark epochs A and B. We then give the assign the following meanings to the
mark bit states:

0x0 unmarked
– The object is not marked: In this case the block was not allocated at the time the snapshot was

taken (even if it may be filled now, due to concurrent mutation) and consequently we are under
no obligation to mark or trace it. Moreover, it is impossible to determine from AllocPtrSnap
alone whether the block has been allocated and consequently it would be unsafe to do so (since it
may not even contain a valid object).
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0x1 marked in epoch A

0x3 marked in epoch B

We then track the epoch of the current ongoing mark as global state, CurMarkEpoch,
which gets flipped during mark preparaion. If and only if the epoch indicated by a block’s
mark bits matches CurMarkEpoch then we can conclude that it was marked in the current
collection.

2.4.4 Sweeping

In the sweep phase the collector examines the bitmap of each segment, which now conserva-
tively16 reflects block liveness, and

• if all blocks of the segment are dead, then the segment is moved to Free
• else if all blocks of the segment are live, then the segment is moved to Filled
• otherwise the segment is moved to Active

Before returning a segment to Active, the collector initializes the segment’s AllocPtr
and AllocPtrSnap to point to its first available block.

In addition to sweeping blocks, the sweep phase must traverse the generational remembered
set and remove closures which were found to be dead (lest a younger generation collector try
to traverse a closure that was already swept). This requires that we have a predicate for
determining whether a closure is alive (which is surprisingly subtle, as discussed in Section
2.5.2).

2.4.5 Interaction with the nursery collector and mutator

Under this proposal, the mutator only allocates into its nursery, meaning that no changes
will need to be made for code generation of mutator allocations.

MutatorBitmapNon-moving
Heap

Blocks AllocPtr
Gen 0

Nursery

via barrier

Figure 3: The mutator may allocate into the nursery and may read and mutate the non-
moving heap. However, a write barrier must be respected during mutation.

Only the nursery garbage collector allocates using the non-moving allocator. The nursery
collector will use the allocation algorithm described in Section 2.2 to allocate space for values
evacuated from the nursery.

16Specifically, the liveness bitmaps will designate as dead a subset of the blocks that were dead at the time
that collection was initiated.
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Figure 4: The nursery collector may promote some values to the old generation using the
non-moving allocator while others may remain in the nursery due to aging. The nursery
collector stops all mutator threads as well as the non-moving mark thread.

Note that nursery collections may run concurrently with the sweep phase of the non-moving
collector. The safety of this concurrent allocation is due to mutation invariants respected by
both the allocator and non-moving collector which can be phrased in terms of ownership
(where a value may only be observed or mutated by its owner):

• the bitmap bits corresponding to all blocks before AllocPtrSnap belong to the
collector

• the bitmap bits of all blocks after AllocPtrSnap belong to the allocator
• the mutator has ownership of allocated Blks17

• AllocPtr of segments in Filled belong to the collector
• AllocPtr of segments in Active belong to the allocator
• AllocPtr of a Current segment belongs to the allocator
• AllocPtrSnap belongs to the collector

The mutator and the non-moving collector interact in a few ways:

• the mutator can modify mutable objects (e.g. arrays) residing in the non-moving heap;
this requires that such objects be added to the generational remembered set (as is
already done today) and UpdRemSet

• the mutator can update thunks residing in the non-moving heap. These will be added
to UpdRemSet when the snapshot write barrier is enabled

• the collector can enable and disable the mutator’s snapshot write barrier

2.4.6 Scavenging after promotion

The nursery collector must scavenge any objects that it evacuates. Typically this happens
by adding the block descriptor of the target block to the todo_bd list of the copying GC’s
gen_workspace and setting the block’s Cheney-style Scan and Limit pointers. While a
similar mechanism will work in the case of evacuation to the non-moving heap, we need to
take care to ensure that the scan pointer (bdescr.u.scan) points to the data portion of the

17The claim that the mutator has ownership of Blks doesn’t strictly hold in the presence of the selector
optimisation and indirection short-cutting, both of which the proposed design implements. However, in this
case the mutations made by the collectors are semantics-preserving and made in such a manner that the
mutator cannot observe any inconsistent state. More about this below.
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non-moving segment, not the segment header/bitmap. This will be done when NextFree
is set after sweep.

While we could in principle allow the nursery GC to scavenge all objects past the Scan
pointer until the end of the segment, this would mean that many objects would be scanned
unnecessarily (e.g. any objects pre-existing in the segment).

To avoid unnecessarily scavenging objects which contain no references to moved objects, we
propose that scavenge_block learn to look at the non-moving bitmap. Specifically, it is
only necessary to scavenge objects between the Scan and Limit whose bitmap bits are not
set as these are precisely the objects that were evacuated in the current copying collection:

• If an object’s bitmap bit is set, then we know that it was alive at the time of the last
major garbage collection.

• If an object bit is unset, then we know that it was evacuated into the non-moving heap
during the present nursery collection and should be scavenged.

As we scavenge an object, we set its bitmap bit since we have established that it is live. Note
that it is quite important that we do this, lest we potentially later scavenge dead objects,
resulting in memory unsafety. To see why this is necessary, consider the following situation
(see ticket #25):

1. During a minor GC we evacuate two objects to the nonmoving heap:
a. We have object O1 in a Filled segment
b. We have object O2 in a Current segment which holds a pointer to O1

2. We scavenge both objects
3. Both objects become unreachable
4. Soon thereafter we run mark & sweep; O1 will be swept. However, since O2 is in a

current segment O2 is not swept (as we only sweep Filled segments).
5. Later we evacuate more objects into O2’s segment; since AllocPtr has the same

value it had in step (1), O2 will be in the range of scavenged objects. Furthermore, its
mark bit will be unset, meaning that we will scavenge it. In so doing we will attempt
to evacuate O1, which died long ago.

6. Chaos ensues.

By marking O2 when we scavenge it in step (2) we ensure that it doesn’t get scavenged in
step (4), after we have already swept O1.

To track which segments need scavenging a work-list needs to be maintained; at the beginning
of a minor GC all Current segments will be added to this list. At the same time, the
segment’s Scan pointer will be initialized to the value of AllocPtr.18 Further, whenever a
segment is filled, the new Current segment will similarly need to be added to the work-list
and have its scan pointer initialized.

Finally, in addition to scavenging segments containing newly-promoted objects, we also
must scavenge the oldest generation’s generational remembered set (mut_list). To see why,
imagine that we have a mutable object P living in the non-moving heap. Further, imagine
that P has a pointer field. Naturally, P was scavenged when it was originally promoted
to the non-moving heap. Now imagine that a mutator modifies P ’s pointer field to point

18If we can guarantee that allocation will only occur as the result evacuation then we can omit the update
of Scan. This is the case since we know that Scan was updated when the block became active and no
allocation has occurred outside of evacuation.
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to a new object, O, living in a younger generation. Now imagine that we initiate a major
collection; naturally, before we can start such a collection we will perform a GC, promoting
all of the younger generations’ contents to the non-moving heap. After doing so we must
scavenge P , lest it retain a reference to O’s (now dead) location in the moving heap. This is
in contrast to the moving collector, which will needs no special treatment for mut_list; if
P is found to be live then it will be evacuated and later scavenged in the course of normal
copying collection.

Moreover, in scavenging the generational remembered set we ensure that objects marked as
dirty (e.g. MUT_VARs) are returned to their clean state.

2.5 Implementation and interactions
The above non-moving allocator and collector will be implemented in GHC’s existing runtime
system. While it will not be necessary to modify GHC’s closure structure, a significant
amount of refactoring will need to be carried out to accommodate multiple collectors.

Below we will discuss a variety of interactions with GHC’s existing runtime and features
that must be accounted for in the design and implementation.

The non-moving collector will be configurable with one or more copying generations and a
single terminal non-moving generation. However, for simplicity the discussion below will
assume a single moving nursery followed by a non-moving old generation.

2.5.1 Interaction with GHC’s block allocator

The non-moving heap segments will be allocated as blocks from GHC’s existing block allocator.
The block allocator currently uses a default block size of 4 kilobytes, eight times smaller than
the 32 kilobyte segment size used by Ueno et al. While it is possible to treat the block size and
the segment size as independent quantities, the implementation becomes significantly simpler
if they are tied. Moreover, with large page support19 becoming increasingly common, it is
possible that GHC’s current block size is suboptimal given today’s hardware and software.
Consequently, we will investigate the effect of increasing the block size and potentially raise
the default value.

Non-moving blocks will be distinguished from the blocks belonging to the copying collector
through a BF_NONMOVING flag added to the existing flags field of the bdescr type. However,
even without knowing of this flag the moving nursery collector will know to not trace pointers
within the non-moving heap (other than those in the generational remembered set) by the
block’s generation field.

2.5.2 Liveness predicate

There are two places during sweep where the non-moving collector needs to know whether a
given block contains a live closure:

• weak pointer marking (Section 2.5.17)
• generational remembered set sweeping (Section 2.4.4)

19See, e.g., https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/vm/
transhuge.txt
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For this we use a predicate IsAlive(blk). Defining this predicate properly is a bit subtle.
Note that this predicate may only be used after a full mark has been finished but before
sweep so we know that the mark bitmap and snapshot pointer reflect the snapshot of the
on-going collection.

The IsAlive predicate must consider four cases:

• the block is below AllocPtrSnap: In this case the closure was reachable when the
snapshot was taken and consequently we must conclude that the block is alive.

• the block is above AllocPtrSnap:

– BitMap(blk) = 0: In this case the block was not allocated when the snapshot
was taken. however, it may have been allocated since then and therefore we must
conclude that the block is alive.

– BitMap(blk) = CurMarkEpoch: In this case the object was alive in the last
snapshot. Consequently we must conclude that the object is still alive.

– BitMap(blk) 6= CurMarkEpoch: In this case the object was not reachable in
the last snapshot. We can therefore conclude that the object is dead since the
snapshot invariant guarantees that all objects reachable in the snapshot would be
marked.

2.5.3 Pointer Array#s

GHC’s Array# and SmallArray# types implement contiguously-allocated arrays. Since the
non-moving collector is concurrent, collecting these poses no particular challenge. To avoid
complex interactions with the nursery collector, the non-moving card table of Array# won’t
be usable by the non-moving collector. However, the non-moving collector has little need
for the card table as updates are already accounted for by way of UpdRemSet. Marking
an Array# will involve pushing all pointers contained within to the mark queue and setting
a new BF_NONMOVING_MARKED flag in its block flags. The marker will know it can ignore
BF_NONMOVING_MARKED blocks.

To avoid duplicating the entire array on the mark queue, we might, as an optimization,
introduce a new form of mark queue entry (which we’ll call MARK_ARRAY) containing a pointer
to the array and the index of the first element that has not yet been traced. When an
Array# is first encountered it will be pushed as a MARK_ARRAY with idx=0. When the marker
encounters such an entry it will break off a fixed-size chunk of pointers from the array, and
push them to the mark queue along with a new MARK_ARRAY entry covering the rest of the
array. This allows us to bound the size of the mark queue while preserving locality during
tracing.

2.5.4 Pinned ByteArray#s

GHC exposes a mechanism for users to mark ByteArray#s as immovable (“pinned”). This
mechanism is the basis of the frequently-used bytestring library and is critical for interop-
erability with foreign code. This requires no special support in the non-moving collector as
allocations are pinned by default.

However, since the moving collector will still be in use for nursery allocations, we must leave
the runtime’s existing allocation-pinning logic in place.
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2.5.5 Large objects

Like many collectors, GHC’s moving collector currently treats heap objects larger than a
fixed threshold (LARGE_OBJECT_THRESHOLD, currently set to 80% of the block size or around
3 kilobytes) as immovable. Such objects are allocated into their own blocks (allocated using
the block allocator) which are distinguished with the BF_LARGE block flag.

This special treatment will become particularly important in the non-moving collector, which
has a finite number of sub-allocators with which to service allocation requests. With a
dedicated allocation path for large objects, the non-moving allocator can consist of as few as
nine sub-allocators, {H3, ..., H12}.

Beyond basic tracing logic in the mark phase, no particular support will be necessary in the
non-moving collector to support this dedicated large-object path other than the addition of
a new block flag, BF_NONMOVING_MARKED.

In practice, there are a few thorny implementation details that must be handled. Large
objects are currently tracked in the generation datastructure in GHC’s storage manager
which is mutated by both major and minor GC. In particular, each generation has three
lists of objects: large_objects, todo_large_objects, and scavenged_large_objects.
Over the course of a moving collection live large objects are moved from large_objects
to todo_large_objects as they are evacuated. The scavenger then pulls objects from
todo_large_objects, scavenges them, and places them on scavenged_large_objects. At
the end of a collection the collector traverses the collected generations and frees their
large_objects. For all non-collected generations the blocks in scavenged_large_objects
are moved to large_objects.

The fact that oldest_gen (the generation of the oldest GC generation) is global
state poses a bit of a complication in the presence of concurrent marking. To avoid
having to share the oldest generation’s large object list with the younger generation
collection we define two new sets of large objects, nonmoving_large_objects and
nonmoving_marked_large_objects. After the moving phase of a major collection has fin-
ished we move the contents of oldest_gen->large_objects to nonmoving_large_objects
as well as set the BF_NONMOVING_SWEEPING flag20 of each block we move; this is the set
of large objects that we will collected during the concurrent mark-and-sweep. The mark
phase will move large objects that it encounters with BF_NONMOVING_SWEEPING set from
nonmoving_large_objects to nonmoving_marked_large_objects. Objects not found on
nonmoving_large_objects can be assumed to either be in a younger generation or already
marked.

During sweep we free all objects in nonmoving_large_objects and move the contents of
nonmoving_marked_large_objects back to nonmoving_large_objects.

20The BF_NONMOVING_SWEEPING flag allows us to identify which large objects are in the snapshot
during marking. This is important since minor generation collections will add promoted objects to
oldest_gen->large_objects during the course of a major collection. Such objects aren’t part of the
snapshot for the on-going major collection and can therefore be ignored by mark. Moreover, failing to ignore
them would complicate implementation as we wouldn’t know which block list, oldest_gen->large_objects
or nonmoving_large_objects, to remove a large object block from during marking.
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2.5.6 Constant applicative forms

As discussed in Section 2.4.2, GHC has special arrangements for tracing references to constant
applicative forms (CAFs) and their referees from static code. Specifically, these dependencies
are tracked via a static reference table (SRT) referred to by the static code’s info table. SRT
entries will need to be traced by the mark phase to ensure that CAFs liveness is correctly
assessed.

Beyond tracing SRTs, the non-moving collector also needs to maintain a mark flag for each
CAF. There are a few options here:

1. maintain a list of marked static objects in an auxiliary data structure ( e.g. a hash set).

2. claim an unused bit in the static object closure for use by the non-moving collector as
a mark bit.

Initially we propose to implement option (1), potentially moving to (2) if mark performance
is found to suffer as a result.

2.5.6.1 Intrusive static marking

The use of an auxiliary data structure for marking static objects is both unduly expensive
and quite inconsistent with how marking of other objects is performed, both in the moving
and non-moving collectors.

Attaching auxiliary information to static objects is tricky since they live outside of the dynamic
heap. For instance, the moving collector typically uses the containing block descriptor to
determine whether a closure in the dynamic heap lives in from- or to-space. This is not
possible in the case of static objects. Instead the moving collector encodes whether a static
object has been evacuated in an additional field: the static link field. This field has two roles:

• it serves as an intrusive link field so that the list of CAFs can be collected and later
walked in the -debug RTS.

• the two low-order bits encode the static flag, which records whether the closure has
been evacuated in the current GC.

The static flag field has four states:

• 0, which indicates a closure which has never been seen by the GC
• STATIC_FLAG_A and STATIC_FLAG_B, which indicate a closure that has been marked

either in either the current or previous GC (depending upon the value of the global
static_flag state, which is flipped before every major GC)

• 0b11, which indicates that the GC should ignore this closure (e.g. because it is not
CAFfy)

The static link field is set by the moving collector during evacuation.

Under the non-moving collector each static object will be in one of five states:

• the closure has never been seen by the GC
• the closure was evacuated to the non-moving in the current major GC cycle but has

not yet been marked
• the closure was evacuated to the non-moving in a previous major GC cycle but has

not yet been marked
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• the closure has been marked
• the closure can be ignored by the GC (e.g. because it is not CAFfy)

We can view these states as a product of the existing four-state static flag and an independent
binary non-moving mark flag. These states can be encoded in the three low-order bits of the
static link pointer. Unfortunately, this does mean that we lose support for 32-bit platforms,
which have only two unused low-order bits.

Which setting of the non-moving mark flag we consider to be “marked” will be tracked in
by a global flag nonmoving_static_flag. This flag will be flipped during the preparation
phase of the non-moving collection. To ensure that CAFs evaluated during a concurrent
non-moving mark are properly marked during the next major GC newCAF must take care to
set the non-moving mark flag of the CAF with the current value of nonmoving_static_flag
when it initializes the new CAF.

2.5.7 Selector optimization

GHC’s existing garbage collector implements an optimization known commonly as the
selector optimization [Wadler1987]. This optimization avoids a set of common space leaks
caused by thunks of applications of field selectors. For instance, consider a heap containing
the following:

w = (_, v)
x = snd w
y = (x, _)
z = fst y
a = f z -- N.B. a thunk of ‘f‘ with free variable ‘z‘

When collecting this heap, the garbage collector would replace a’s pointer to z with the
value of z’s reduction, v. This potentially allows w, x y, and z to be collected, which avoids
some classes of space leaks. We call a sequence of selector applications that reduce to a
WHNF result a selector chain (which we will abbreviate as “chain”). In the case above the
chain induced by the reduction of z is [z = fst (x,_), x = snd (_, v)].

Since this feature is a bit subtle, we will first review the existing implementation in the
moving collector, followed by a discussion of the proposed implementation in the non-moving
collector.

2.5.7.1 Implementation in moving collector

This optimisation is implemented during evacuation. Before trying to evacuate a selector
closure it checks that a) it is not a static closure, and b) it hasn’t yet been evacuated. If
either of these conditions are not true then it gives up, falling back to standard evacuation.

To evacuate a selector closure the collector first locks the closure by replacing it with a
whitehole. It then evacuates the closure and overwrite the first field of the closure that remains
in from space for use as a link pointer to keep track of the selector chain currently being
traversed. For this reason, the current implementation relies crucially on the stop-the-world
nature of the moving collector.

After whiteholing the selector the collector then looks at the selectee; there a few cases here:
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• the selectee is a forwarding pointer: In this case the selectee has already been evacuated.
Consequently, we choose not to perform the selector optimisation since the space for
the selectee has already been allocated. We unwind the changes made, replacing all
elements of the chain we’ve traversed with indirections.

• the selectee is an indirection: In this case we simply follow the indirection and try
again.

• the selectee is another thunk selector: In this case it adds the selector onto the chain,
setting its link field to point to the previous closure in the chain.

• the selectee is a constructor: In this case we have possibly reached our result; we
examine the value of the selected field and check whether it is also a selector thunk or
indirection:

– If it is an indirection then we follow it
– If it is a selector then we recurse.
– If it is neither an indirection nor a selector then we have found the result of the

chain

• the selectee is a thunk: In this case the selector optimisation does not apply; we unwind
the changes made, replacing all elements of the chain we’ve traversed with indirections.

The implementation enforces a recursion depth limit (namely MAX_THUNK_SELECTOR_DEPTH,
currently 16) to bound stack usage. However, this limit only counts nested selector thunks,
e.g. fst (fst (... (fst x))). The collector will traverse interleaved selector-constructor
pairs without limit, e.g.

a = (fst b, _)
b = (fst c, _)
c = (fst d, _)
d = (x, _)

When the collector arrives at the result of a chain it walks back over the chain it traversed
(via the link pointer), replacing each selector with an indirection pointing to the final result
and updating the referee of the selector to reflect the location of the result in to space.

If the collector instead arrives at a thunk or whitehole (indicative of another GC thread
already evacuating the closure) then the selector optimisation aborts. It walks back over the
chain, replacing all selectors with indirections.

2.5.7.2 Implementation in non-moving collector

Let’s examine how the mark phase would handle the example considered earlier in this
section:

w = (_, v)
x = snd w
y = (x, _)
z = fst y
a = f z -- N.B. a thunk of ‘f‘ with a single free variable, ‘z‘

Where a is a root. Marking a will proceed as usual as it is a standard thunk. Note, however,
that the selector optimization requires that we be able to update a’s field referring to b
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when we later discover that z is a selector thunk. To ensure that this can be done, mark
queue entries must include a reference to the closure location and field where the reference
to the object to be marked was found (known as the “origin” of the entry). Consequently, a
marking a will result in the entry {closure=z, origin=a[0]} being pushed to the mark
queue.

When the mark queue entry for z is popped, the mark phase will notice that its head, fst, is
a selector and attempt to apply the selector optimisation. Before proceeding, the mark phase
will white-hole the selector21 to indicate that it is under evaluation and to avoid loops. As in
the moving collector, we will chain selector closures together by using the selector closure’s
link pointer.22 To ensure that younger generation collections don’t interfere with this process
it is important that the moving collector’s preconditions to the selector optimisation prevent
it from following references into the non-moving heap.

Once the non-moving collector has white-holed a selector, it will then walk down the selectee
chain in much the same way that the moving collector, with the same depth limit on nested
selectors.

If a WHNF result is reached then the collector will walk back over the chain, replacing each
selector with an indirection. Finally, the collector will also replace the value of the origin
field recorded in the queue entry with the final result. Note that the origin field update
must be done with a compare-and-swap to ensure that the collector does not overwrite a
modification made to the object by the mutator since the mark queue entry was pushed
(e.g. in the case of a mutable Array#).

Note that it is still necessary to mark the entire chain after having applied the selector
optimisation due to the snapshot invariant. This means that we will not be able to reclaim
the chain until the next collection cycle.

2.5.8 Indirection short-cutting

The moving collector is able to short-out references through indirections encountered dur-
ing evacuation. This is important for program performance as thunk updates introduce
indirections during the course of normal evaluation.

This feature can be viewed as a limited form of the selector optimisation described above.
Implementation in the non-moving collector follows the selector optimisation closely: when
an indirection is marked the mark phase checks that the indirectee is not also an indirection.
If it is then it follows it and loops. When something other than an indirection is reached, it
overwrites the origin field with the result via compare-and-swap.

21Due to its concurrent nature, the non-moving collector needs to be very careful in how it changes the
heap to avoid allowing the mutator to see an inconsistent state. In particular, we must never change the
type of a closure which a mutator may find a tagged reference to. Thankfully, references to selector are
never tagged as constructors; afterall, selectors are thunks. This means that white-holing a selector is safe,
assuming we take care to CAS the info table to avoid racing with evaluation by a mutator.

22Thunk closures have what is called an “SMP header” which contains the word that is used for the chain
link pointer. This allows us to chain together selectors without overwriting their selectee fields, which is quite
important since we may need to revert the changes made by the GC if the selector optimisation ultimately
comes to a thunk and must abort.
Note that the presence of the SMP header isn’t quite as important in the moving collector since it first

evacuates the selector before modifying it. This means that it can modify the closure in from space however
it likes since it will ultimately be overwritten by an indirection anyways.
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As in the case of the selector optimisation, the indirection must be marked as it was alive
when the snapshot was taken.

2.5.9 Write barrier

As discussed in Section 2, a write barrier is necessary to ensure that collection respects the
snapshot liveness invariant. This barrier affects writes to pointer fields. For instance, if x is
a pointer to a pointer field, then the assignment *x = y requires that the initial value of the
pointer *x is added to UpdRemSet.

The write barrier will be controlled by a global flag defined by libHSrts and will require
the following changes to the runtime system and generated code:

Thread suspension When lazy blackholing is enabled the thread suspension logic is re-
sponsible for traversing the to-be-suspended thread’s stack and blackhole all thunks
under evaluation (identified by update frames on the stack). This codepath will need
to be taught to add the free variables of such under-evaluation thunks to the update
remembered set.

source reference: rts/ThreadPaused.c:threadPaused

Eager blackholing When eager blackholing is enabled (with the -feager-blackholing
compiler flag) the code generator produces code to replace entered thunks with
EAGER_BLACKHOLE objects.23 This code needs to be modified to add the free vari-
ables of such thunks to the update remembered set.

source reference: compiler/codeGen/StgCmmBind.hs:thunkCode

UPD_FRAME entry code In this case we will be replacing a thunk closure or blackhole with
an indirection. When the write barrier is enabled the entry code will add the pointer
fields of the thunk to UpdRemSet. Furthermore, the code will add the thunk’s SRT
to ensure that the static references of its code are marked.

source reference: rts/Updates.h:updateWithIndirection

MutVar# These objects belong to a class of closure types which we call “dirty/clean” objects.
That is, each MutVar# has a dirtiness flag, encoded by its info table. Specifically, a
MutVar# may have one of two info tables:

• MUT_VAR_CLEAN_info: Denotes a MutVar# which is known to contain no a ref-
erence to an object living in a younger generation. Such objects are not in the
generational remembered set.

• MUT_VAR_DIRTY_info: Denotes a MutVar# which has been mutated and therefore
may refer to an object living in a younger generation. Such objects are added to
the generational remembered set when they are dirtied (by the dirty_MUT_VAR
function).

This dirtiness flag allows the runtime system to avoid adding a given object to the
generational remembered set more than once.

23EAGER_BLACKHOLE objects differ from normal BLACKHOLE objects in that they do not guarantee single-entry.
The thread suspension code later uses stronger synchronization to break ties between multiple threads who
entered the same thunk, replacing the EAGER_BLACKHOLE with a normal BLACKHOLE.
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The non-moving collector’s update remembered set has slightly different needs: it must
ensure that the pointers reachable by the MutVar# at the time of the snapshot are
marked. To do this we must record in UpdRemSet the old pointer value before the
first mutation of each MutVar# after the snapshot is taken.

To do this we rely on the fact that all live objects are promoted to the old generation
before a major collection. This means that all MutVar#s can be marked as clean
during the preparatory phase of a major collection (specifically this will happen when
scavenging the mut_list during the preparatory minor collection).

The fact that all MutVar#s are marked as clean on initiation of a major collection
allows us to use the same dirtying logic used by the generational remembered set in the
update remembered set write barrier. Specifically, dirty_MUT_VAR will record the old
value of a MutVar# to the update remembered set if and only if the MutVar# is clean.

source references:

• rts/sm/Storage.c:dirty_MUT_VAR
• rts/sm/StgCmmPrim.c:emitPrimOp (the WriteMutVarOp case)

array mutation GHC’s current moving collector always considers mutable arrays to be
in its generational remembered set.24 This means that they will be scavenged by
collections of all generations younger than that in which the array resides.

Therefore, MutableArray# and SmallMutableArray# mutations occurring during the
concurrent mark must implement a write barrier adding overwritten pointers to
UpdRemSet. Such mutations arise from a number of GHC primops including
writeArray#, copyArray#, and casArray#. Most of these are emitted by the code
generator.

source reference: compiler/codeGen/StgCmmPrim.hs:doWritePtrArrayOp

TVar# and MVar# Like arrays, these objects already have write barriers which add mutated
objects to the remembered set, tracking dirtiness via the info pointer. Unlike arrays,
these object types hold only a small number of pointers. This allows us to implement
the write barrier significantly more efficiently.

The non-moving collector exploits a modified version of the clean/dirty behavior
described above to ensure that only the first mutation of an object results in a push to
the update remembered set.

source reference: rts/sm/Storage.c:dirty_TVAR

WeakPtr#s The tombstoning of a weak pointer is a form of mutation. However, as weak
pointers are not traced, it does not change the reachability graph and therefore it needs
no special treatment to maintain the snapshot liveness invariant.

stacks Thread stacks are ubiquitous and heavily mutated. To make this common case more
efficient, we follow the existing collector giving them special treatment. Stacks in GHC
are chunked, each chunk being represented by a STACK heap object. Any stack chunk
currently at the head of a running thread’s stack is said to be “dirty”, a status which

24Arrays also have dirty/clean flags. However, unlike MutVar#s, this flag isn’t useful for the purpose of
maintaining the snapshot invariant since arrays may contain more than one pointer.
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is indicated via a flag in the STACK closure. Dirty stacks are unconditionally on the
generational remembered set to account for possible references into the nursery.

To ensure that the snapshot invariant is respected we must eagerly mark a stack chunk’s
entries before it is dirtied. Note that this only requires that we pause mutation to mark
stack chunks that are dirtied. Chunks that are not dirtied can be marked concurrently.

However, since the structure of stack entries may change in the course of mutation, we
must ensure that marking by the concurrent collector does not proceed concurrently
with mutation. That is, when the mutator dirties a stack it must wait for any active
concurrent marking to finish before commencing mutation. This is achieved via a
locking handshake using the stack’s dirty field.

source reference: rts/sm/Storage.c:dirty_STACK

thread state objects (TSOs) Thread state objects contain all of the state of execution of
a Haskell thread. This includes a stack, scheduler state, STM transaction metadata, and
a blocking queue listing threads blocked on thunks the thread is currently evaluating.
Like stacks, TSOs are treated specially under the existing collector, a thread’s TSO
being marked as dirtied whenever the thread is scheduled for execution whenever the
thread is scheduled for execution.

source reference: rts/sm/Storage.c:dirty_TSO

(proposed) mutable constructor fields Simon Marlow’s mutable constructor fields pro-
posal describes a facility for first-class mutable constructor fields in GHC. If this
proposal is implemented, the code generated for such field mutations will need to
contain the same write barrier as is used in array mutation.

2.5.10 Collector selection

As some of the above changes affect code generated by GHC, we have a choice in implemen-
tation strategy:

a. Make the choice between copying and non-moving collectors a compile-time decision
by introducing a new way (e.g. as currently the profiling, threaded RTS, and eventlog
options are handled)

b. Always compile in both collectors and allow the decision to be made at runtime,
accepting that the unused codepath will incur a small runtime and size overhead.

While (a) is conceptually simpler and avoids any chance that the current collector will
regress, it would essentially bring the number of GHC’s support ways from 4 to eight, which
greatly complicates packaging and distribution of the compiler, as well as downstream tools’
interactions with it.

Consequently, we will instead opt to always compile in the new barriers. This will mean that
each Array# write will incur an extra branch conditioned on the barrier enable flag. The
code generator will produce code to ensure that this branch is predicted not-taken, ensuring
minimal impact on the performance of the copying collector (which will never enable the
barrier). We expect the code-size overhead will be manageable.

Additionally, for the sake of testing we will place the new collector behind a CPP macro,
allowing it to be removed entired from the runtime system.
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2.5.11 Collection scheduling

There are numerous options for garbage collection scheduling policy. GHC’s current imple-
mentation uses a simple growth rate heuristic (tuned with the +RTS -F flag) to determine
major collection scheduling. The same heuristic will be initially used to schedule collections
by the non-moving collector. Additional policies can be explored as necessary.

Additionally, in the case of concurrent collection there is the possibility that the mutator will
run “faster” than the collector. To ensure that the heap size doesn’t grow in an uncontrolled
manner, we will cap the amount that the mutator can allocate over the course of a given
non-moving collection. If the mutator exceeds this limit, it will be forced to pause by the
nursery collector.

2.5.12 Update remembered set

The generational nature of GHC’s current moving collector requires that references from old
generations to young generations are tracked via a remembered set which we have here called
the “generational remembered set”. The current implementation attaches such a remembered
set to every heap generation.

The non-moving collector will additionally require a remembered set for pointers contained
by objects living in the non-moving heap who have been overwritten during the mark phase,
UpdRemSet.

This remembered set will enforce the following write barrier: Consider that the mutator
wishes to write a reference to object p to pointer field O->payload[i]:

1. The mutator does the usual generational remembered set update
2. The mutator checks whether the non-moving write barrier has been enabled by the

mark phase; if not, then proceed to (4)
3. If the write barrier is enabled:

a. The mutator checks the block descriptor of O’s containing block; if it is not in the
non-moving generation then proceed to (4)

b. Otherwise, add a value of the O->payload[i] to UpdRemSet, along with its
origin closure and field.

4. Set O->payload[i] = p

This is the only data structure in the non-moving collector which undergoes concurrent
access by both the mutators and collector and it consequently demands careful design.

For this we propose a chunked, dense array representation. Under this design, each capa-
bility will maintain an accumulator where its local remembered set is accumulated. This
accumulator will take the form of a “chunk”, represented by a dense array of pointers. When
a capability has filled its local accumulator, it links the chunk into a global linked list,
RSetChunks, for consumption by the non-moving collector.

To safely proceed to the sweep phase, the collector must first ensure that all capabilities have
flushed any pending accumulator chunks to RSetChunks. To ensure this, the following
handshake is carried out between the collection initiator and the remaining capabilities at
the end of mark phase:

1. the initiator initializes a global semaphore with value 0
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2. the initiator signals all capabilities to enter the garbage collector using the existing
Capability.interrupt flag

3. on hitting a yield point, each mutator will enter the garbage collector, add its pending
remembered set chunk to RSetChunks, and block

4. the initiator will mark chunks as they are added to RSetChunks
5. when all capabilities have signaled the semaphore and RSetChunks is empty, the

initiator unblocks the capabilities and proceeds to the sweep phase

This design optimizes for cache locality and amortises expensive inter-thread synchronization
over many set additions to minimize the overhead of the write barrier on the mutator.

One potential optimization is to allow capabilities to mark their own remembered set chunks
when they are paused instead of deferring this to the initiator.

2.5.13 Eager promotion

The current moving collector employs an eager promotion policy for inter-generational
references. This promotes closures residing in generation 0 but referred to by an older
generation directly to the older generation. This is an important optimization as this
situation arises frequently due to updates of old thunks. This should continue to work under
the non-moving collector.

2.5.14 Cost-center profiler

GHC’s cost-center heap profiler relies on the garbage collector to gather heap census samples.
This census functionality must be implemented in the mark phase of the non-moving garbage
collector.

Furthermore, processHeapClosureForDead, which collects data for the biographical profiler,
must be adapted to include the marking bitmaps of the non-moving heap and called during
the sweep phase.

2.5.15 Compact regions

The compact normal-forms mechanism introduced in GHC 8.0 provides a means for users
to collect closed heap subgraphs into a single heap region. Not only does this improve
garbage-collection efficiency by removing the need to trace pointers within the region, but it
can also serve as an efficient means of serialization. Compact regions are represented in the
heap by blocks bearing the BF_COMPACT flag. The non-moving mark phase will need to set
the BF_MARKED flag on such blocks during marking.

2.5.16 Stable pointers

GHC’s StablePtr facility allows the user to create a stable handle which can be passed to
foreign code as an opaque reference to a Haskell value. This is implemented in the runtime
system using a dictionary that maps stable pointer handles to their referents. The moving
garbage collector considers entries in this dictionary to be roots.

While the stable identity provided by this dictionary indirection isn’t strictly needed in the
non-moving heap (as heap object addresses are stable by default), it is still necessary as
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we retain the moving nursery. Consequently, the handle dictionary indirection will remain
unchanged.

The concurrency introduced in the non-moving collector does have another minor effect:
GHC’s stable pointer creation path will need to be modified to add StablePtrs created
during the mark phase to the UpdRemSet to maintain the snapshot liveness invariant.

2.5.17 Weak and foreign pointers

GHC’s ForeignPtr mechanism allows the user to register finalizers to be run after a heap
object dies. The copying collector currently implements this in terms of the runtime’s
WeakPtr# facility [Elliott1999]. Despite what the name suggests, GHC’s WeakPtr# provides
significantly more than the traditional non-traced pointer:

• a weak pointer may have both a key and a value, providing a solution to the key-in-value
problem discussed in [Elliott1999]

• a means of attaching a finalizer to be run when the value becomes unreachable; two
types of finalizers are supported:

– A Haskell finalizer (of type IO ()) may be defined when the WeakPtr# is created
with mkWeak#

– C finalizers may be added to an existing WeakPtr# with addCFinalizerToWeak#

To implement WeakPtr#, the runtime system maintains a list of weak pointers,
WeakPtrList. Adjusting the non-moving mark/sweep collector for weak pointers
involves adjusting the mark phase slightly (paraphrasing [Elliott1999]):

1. mark the heap reachable from the roots, as usual
2. for each weak pointer in WeakPtrList with a marked key, mark the heap reach-

able from its value field or its finalizer and move the weak pointer to a new list,
WeakPtrList′.

3. repeat step (2) until no WeakPtrList entry has a marked key
4. for each weak pointer in WeakPtrList:

• replace the WeakPtr# with a tombstone if it is marked
• if the weak pointer has a finalizer: move the pointer to a new list,

FinalPendingList, and mark the heap reachable from the finalizer.
5. set WeakPtrList := WeakPtrList′.
6. mark any unmarked weak pointers on WeakPtrList so they aren’t discarded
7. spawn a finalization thread to execute the finalizers in FinalPendingList.
8. proceed to the sweep phase

Note that there are a few subtleties due to the generational collector: the copying collector
does not finalize weak pointers living in older generations than the generation currently being
collected. However, note that an object’s key may still live in an older generation. In this
case the moving collector’s closure liveness predicate, isAlive (defined in rts/sm/GCAux.c),
returns true as a conservative estimate of the key’s liveness. isAlive will need to be similarly
modified for the nonmoving collector, returning true for objects that live in the nonmoving
heap. The weak marking logic will then need to handle major GCs specially. See Section
2.5.2 for details.

Note that the link field of StgWeak can be safely used by the non-moving collector for weak
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objects residing in the non-moving heap. This is because the copying collector will only
attempt to link weak objects living in the generation it is collecting into its weak object list.

Also note that the possibility of aged objects poses a bit of complexity. Specifically, if one
has a weak pointer living in the nonmoving heap with a key in the moving heap. In this case,
unlike the moving collector, we must be certain to evacuate the weak pointer’s key when it
is scavenged.25 This ensures that the key is still valid when we later go to check its liveness
when we tidy the weak.

2.5.18 Stable names

The StableName facility [Elliott1999] allows the user to associate a stable abstract name,
embodied by a Haskell StableName value, with a Haskell value. This facility shares a great
deal of implementation with the stable pointers facility described in Section 2.5.17. However,
stable name management additionally requires a dictionary of names keyed on referent
address to ensure that the makeStableName operation is idempotent. The current moving
collector must update this map after evacuation as object addresses have changed (see
updateStableTables). However, since values in the non-moving heap have stable addresses,
this will not be necessary for non-moving collection.

Like mkStablePtr, makeStableName requires a write barrier to add any objects in the
nonmoving heap (and the StableName# object itself) to the update remembered set while a
mark is underway.

2.5.19 Sparks

GHC’s “spark” mechanism enables expressions to be added to a global pool, where they
can be opportunistically evaluated by idle capabilities. This requires a bit of cooperation
from the garbage collector to ensure that sparks that become unreachable (so-called “fizzled”
sparks) are removed from the pool.

Because spark evaluation can proceed concurrently with non-moving collection, this will
require a read barrier in the spark evaluation code. Specifically, the spark evaluation code
check whether a non-moving collection is

2.5.20 Deadlock detection

GHC’s garbage collector is in part responsible for identifying mutator deadlocks due to STM
and MVar blocking. When the scheduler realizes it has no threads that can be run it forces a
major garbage collection (see scheduleDetectDeadlock). This collection will resurrect

25There are specifically two ways in which a weak living in the non-moving heap but with a younger key
might be scavenged:

a. a weak object that gets promoted during the preparatory collection of a major GC will be scavenged
when the to-space segment is scavenged by scavenge()

b. a weak object that was already in the major generation when the collection began will be on the
generational remembered set and will be scavenged via scavenge_mutable_lists().

However, case (b) cannot actually occur since the key will have been promoted to the non-moving heap
when the WEAK itself was promoted, as described in (a).
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2.5.21 Software Transactional Memory

GHC’s STM implementation

2.5.22 Mark queue

Due to the variety of features introduced above, the non-moving mark queue is a bit
more elaborate than the usual queue-of-pointers seen in traditional mark-sweep collectors.
Specifically, a queue entry is isomorphic to the following Haskell type:

data MarkQueueEntry

-- | Mark a closure referred to from pointer @originField@
-- of closure @originClosure@
= MarkClosure { markClosure :: Ptr Closure

, originClosure :: Ptr Closure
, originField :: FieldIndex
}

-- | For efficiently marking Array#s
| MarkArray { markArray :: Ptr Array

, startIndex :: FieldIndex
}

type FieldIndex = Word
type Ptr a = Word

MarkClosure encodes the typical case of a “normal” closure in need of marking. However,
since we need to need to be able to “short-out” indirections, we also keep a reference to the
closure and field containing the pointer (Section 2.4.2).

MarkArray allows us to mark Array#s while keeping the mark queue of bounded length, as
discussed in Section 2.5.3.

2.6 Differences in collection behavior from existing collector
There are a few ways in which the collection behavior of the non-moving collector will differ
from that of the existing collector. These are largely due to the concurrent nature of the
new collector:

• Selector thunk chains shorted-out by the selector optimisation won’t be reclaimed until
a later non-moving collection: This is necessary due to the snapshot invariant: the
selectors were live at the beginning of the mark and consequently we can’t free them
since a mutator may have introduced a new reference in an object allocated while the
mark was underway.

• Finalization isn’t as prompt: Finalizers attached to weak pointers won’t be run in
the same collection as the weak was reclaimed. Note that currently GHC makes no
guarantees about the promptness of finalization specifically to allow designs like the
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non-moving collector. However, some user code may nevertheless rely on the current
behavior.

2.7 Optional: Compaction
While the heap layout discussed above is resistant to fragmentation thanks to the size-
stratified sub-allocator structure, programs which may trigger fragmentation can nevertheless
be constructed. Such programs would exhibit large resident-set sizes with a comparatively
small quantity of live data.

If fragmentation is found to be a problem in practice an incremental compaction phase
[BenYitzhak2002] can be implemented. Such a phase would be strategically scheduled on
subsets of the heap by the collector to reduce fragmentation while minimizing pause times.

2.8 Optional: Allocating small pinned ByteArrays in nonmoving
generation

The availability of a non-moving heap offers an interesting opportunity to improve GHC’s
existing ByteArray# pinning mechanism. Pinned ByteArray#s allocations are currently
accumulated into BF_PINNED blocks. This tends to lead to fragmentation since any single
ByteArray# allocation remaining alive will result in the entire block also remaining alive.

However, this can be avoided by teaching allocPinnedByteArray# to allocate small requests
directly into the non-moving generation.

2.9 Work plan
The implementation effort will begin in January 2018. It is expected that refactoring the
runtime system to accommodate a second garbage collector will take up to two months.
After this, three months will be needed to produce a working prototype of the non-moving
collector.

Refinement of the prototype will require another four months. This will involve fixing of
corner-cases, implementation of profiler support, and further code refactoring. After this
work can proceed on characterizing and tuning the performance of the non-moving collector.
Depending upon the performance of the collector, we may take a few weeks to introduce
parallel collection at this point. The remaining time will be spent optimizing, documenting,
and up-streaming the completed implementation.

2.10 Glossary
aging A technique used in generational collectors where objects are retained in a generation

for more than one collection cycle before promotion.

promotion The act of moving an object from a young to an older generation in a generational
garbage collector.

mutator The user program being serviced by the garbage collector.

garbage collector A subsystem responsible for determining object liveness and releasing
dead objects.
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generational garbage collector A garbage collector which exploits the observation that
most objects are short-lived to reduce garbage collection costs.

nursery/generation 0 The generation into which new objects are allocated by the mutator.

incremental garbage collector A garbage collector which can make progress on reclama-
tion while only processing a fraction of the heap in a given run.

parallel garbage collector A garbage collector which can utilize multiple cores to make
progress on collection.

concurrent garbage collector A garbage collector which can run while the mutator runs.

heap fragmentation The tendency for the large blocks of memory to become partitioned
into increasingly smaller blocks of free space over time due to repeated allocation and
deallocation.

compacting/moving garbage collector A garbage collector which eliminates heap frag-
mentation by relocating old, fragmented objects into a contiguous block of heap.

bump-pointer allocator A memory allocator which provides blocks of memory by filling
a contiguous block of free memory starting from the beginning of the block.

remembered set A set which tracks objects which must be traced in addition to the usual
trace set to maintain an invariant of the collector. This proposal discusses two such
sets: the generational remembered set and the update remembered set.

root set The set of objects, generally including thread stacks and , with which marking
begins.

write barrier A requirement in service of the garbage collector placed on a mutator thread
modifying a pointer.

evacuation In a moving garbage collector: the process of moving a heap object residing in
from space into to space.

scavenging In a moving garbage collector: the process of evacuating or fixing-up the
pointers of a previous-evacuated heap object.

tracing The process of discovering the objects reachable from a heap object.

marking The process of recording that a heap object is reachable, typically in a mark
bitmap.

sweeping The process of walking the heap looking for unmarked objects whose memory
can be returned to a free-list for future use by the allocator.
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